
1988

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER
THE UNIVERSITY OF ALABAMA

SPACE SHUTTLE MAIN ENGINE NUMERICAL MODELING CODE
MODIFICATIONS AND ANALYSIS

Prepared by: John P. Ziebarth

Academic Rank: Assistant Professor

University and Department: University of Alabama in
Huntsville
Computer Science Department

NASA/MSFC :
Laboratory:
Division :
Branch: 0

MSFC Colleagues:

Structures and Dynamics
Aerophysics
Computational Fluid
Dynamics

Luke Schutzenhofer and
Paul McConnaughey

Date: August 17, 1988

Contract Number: NGT 01-002-099
The University of Alabama

XXXIV

SPACE SHUTTLE MAIN ENGINE
NUMERICAL MODELING CODE
MODIFICATIONS AND ANALYSIS

John P. Ziebarth
Assistant Professor of Computer Science
University of Alabama in Huntsville

Huntsville, Alabama 35899

ABSTRACT

The user of Computational Fluid Dynamics (CFD) codes
must be concerned with the accuracy and efficiency of the
codes if they are to be used for timely design and
analysis of complicated three-dimensional fluid flow
configurations. A brief discussion of how accuracy and
efficiency affect the CFD solution process is given. A
more detailed discussion of how efficiency can be enhanced
by using a few Cray Research Inc. utilities to address
vectorization is presented and these utilities are applied
to a three-dimensional Navier-Stokes CFD code (INS3D).

0

XXXIV - i

ACKNOWLEDGMENTS

I am grateful for the opportunity that I have had to
participate in the Summer Faculty Fellowship Program. The
work that I completed this summer would not have been
possible without the advice and assistance of Luke
Schutzenhofer and Paul McConnaughey.

I also appreciate the support of Dr. Carl Davis and
the University of Alabama in Huntsville for allowing me to
work with this program.

I would like to thank Dr. Mike Freeman for his
encouragement and guidance throughout the program. The
experience at Marshall Space Flight Center has been very
enjoyable, and I am indebted to the National Aeronautics
and Space Administration and the American Society for
Engineering Education for providing me with the chance to
work at NASA/Marshall Space Flight Center in Huntsville,
Alabama.

-- LIST OF FIGURES

Figure 1 Computer Requirements for
Computational Aerodynamics

Figure 2 Loopmark Results for
Original Version of
Subroutine VISRHS2

Figure 3 Loopmark Results for
Modified Version of
Subroutine VISRHS2

Figure 4 Flowtrace Summary for
Original Version of INS3D

Figure 5 Flowtrace Summary for
Modified Version of INS3D

Figure 6 Flowtrace Calling Tree for
INS3D

XXXIV - 6

XXXIV - 11

XXXIV - 12

XXXIV - 13

XXXIV - 14

XXXIV - 15

XXXIV - iii

INTRODUCTION

Computational Fluid Dynamics (CFD) has become an
extensively used tool in the design and analysis of complex
three-dimensional flows including those through the Space
Shuttle Main Engine (SSME). Rapid advances in CFD over the
last decade have provided to the user community a large set
of computer codes, each with various capabilities and
constraints. These codes are adopted for use by scientists
and engineers who may or may not understand fully the
physics and mathematics in the code. Once adopted, these
codes are adapted to solve a variety of problems, which
hopefully, are similar enough to the ones for which the
code was written to be applicable to the physics in the
code.

In addition to this accuracy consideration, is the
concept of ef f iciencv. For full three-dimensional
calculations, the amount of supercomputer time necessary to
reach a solution can be quite large. To code developers
this large computational time may not be of much concern;
however, for code users interested in design and/or
analysis, solutions must be achievable in a reasonable
amount of time. Unfortunately, most current university
curricula for engineers and scientists do not contain any
preparation on how to efficiently write FORTRAN or use
current supercomputers.

How to measure and/or evaluate accuracy and efficiency
is of current intekest to the CFD community in general, and
to the CFD Branch at NASA/MSFC in particular. In fact, the
entire process of doing a CFD calculation is somehow
affected by either accuracy or efficiency. The solution
process can be divided into three major components: pre-
processing, processing and post-processing. Pre-processing
involves primarily the geometry modeling and the grid
generation. Processing involves the equation modeling of
the flow physics, the implementation of a numerical method
to solve the equations, the FORTRAN coding of the numerical
method and the running of the computer program. The post-
processing takes the massive amount of data produced by the
code and transforms it into a usable form by some
visualization methods.

XXXIV - 1

OBJECTIVES

The objectives of this work were to:

1) Consider accuracy and efficiency as it relates to
CFD codes, and begin to evaluate and establish
guidelines and criteria for CFD code users.

2) Consider efficiency with respect to reducing the
amount of CPU time needed to reach a solution. Do
this by applying some Cray Research Inc. utilities
to a three-dimensional Navier-Stokes CFD code
(INS3D).

XXXIV - 2

ACCURACY

Accuracy is affected at all the levels of processing.
In the pre-processing phase, a precise modeling of the
geometry is necessary. Regardless of how this geometry
modeling is done it quite often only approximates some
complicated boundaries and corners of three-dimensional
configurations. The grid generation is then done on the
resulting geometry model by some mathematical method. It
is well documented [l, 21 that the final solution is
affected by the distribution of grid points in this
computational domain; however, quantitative measures of how
tlgood" a grid is are not readily available.

In the processing phase of the solution accuracy is
affected by many factors. Although the Navier-Stokes
equations are generally accepted as a full description of
turbulent fluid motion in a continuum, the complexity of
the equations and the extremely small time and length
scales of turbulent motion prohibit practical numerical
computation of turbulent flows by this method. Thus, many
levels of approximation are used. These include both
linear and nonlinear inviscid, boundary layer, Reynolds
averaged Navier-Stokes and large eddy simulation
approximations. Once a set of equations is chosen to solve
the flow physics, a numerical method to solve these
equations must be implemented. Thus, accuracy has been
affected at two levels in the processing so far. The next
step is the coding (typically in FORTRAN) and the running
of the code. Here accuracy is dependent on correct coding,
precision of the computer system, and degree to which the
solution is allowed to converge.

In the post-processing, accuracy can be affected by
the visualization method used. Visualization of the flow
involves taking the computed data and inputting it into a
software package which can be either a commercial or
locally developed product and outputting the results onto
some type of graphics hardware. Thus, correctly written
software is required and the resolution of the output
device medium makes a difference in the accuracy of the
visualization.

Currently those involved in CFD approach accuracy from
different directions. Some accept the ltanswerslt as
produced by existing codes as being reasonable while
others tend to be skeptical of at least some aspects of the
solution process. Probably the most accepted components

XXXIV - 3

are the geometry modeling and the post-processing. The
grid is often thought to be acceptable if a flow solution
can be arrived at by using it. Most doubt, if any exists,
is usually directed at the flow solution itself.
Unfortunately, questions concerning the accuracy of the
flow solution do not necessarily have simple solutions.
Many factors play a part in the solution; the modeling of
the equations, the numerical method used to solve these
equations, the convergence criteria used, boundary
condition implementation, turbulence modeling, grid
dependencies, correct coding, etc.

XXXIV - 4

EFFICIENCY

The efficiency of a CFD solution also affects pre-
processing, processing, and post-processing. This is
especially true in design/analysis environments and in
situations where computational resources are scarce. Pre-
processing has typically been the most time consuming part
of the solution process, especially when an analysis is
being done on a new configuration. Current efforts in
interactive geometry modeling and grid generation have
helped some, but this phase is still an area of ongoing
research and development. In the processing phase
efficiency is tightly coupled to computational resources.
An interesting projection [3] was made which indicates that
to be useful in design, computational aerodynamics requires
machines capable of at least one trillion floating-point
operations per second (see Fig. 1). Current supercomputers
do not yet meet this requirement. Post-processing has not
been a particularly inefficient part of the entire solution
process if all that is required is inputting the solution
values to a software package and then displaying the
results on a graphics workstation. However, this is a time
consuming operation if real time high resolution graphical
animation of the flow is desired. This can be a very
computationally intensive task and can involve the
transmission of extremely large quantities of data.

e

The concern of this current work is efficiency during
the processing phase. We assume the pre-processing has
been done in what follows and no post-processing is
discussed. Current CFD users are constrained in achieving
a solution by the following factors:

a) The CPU time needed to reach an acceptable level of
convergence may be large (greater than one hour).

b) Supercomputing centers are often saturated, thus,
the CPU time translates to a much larger wall clock
time.

c) Most or all of the CFD code is typically written by
a researcher who often is not concerned with or
perhaps even knowledgeable of how to write
efficient FORTRAN code.

A CFD user can improve efficiency in varicus ways.
One way is to modify the code so that the FORTRAN is more
efficient. This is typically referred to as optimization
and is not related to vectorization. Optimization improves
efficiency even on a scalar processor. Although writing

XXXIV - 5

n
v, CRAY 2

?

- _

A 0-3 10-2 10-1 100 10'

Rqnoldr-ovwogd
Nov i or-S t dces

-
104

Figure 1 Comguter Requirements for Computational
Aerodynamics

XXXIV - 6

efficient optimized code is best done during the initial
code development, it is usually neglected at that time for
two reasons; 1) getting a solution is of a higher priority
than is writing efficient code and 2) many CFD researchers
do not know how to write efficient FORTRAN code. For the
user, optimizing the code can be very time consuming,
requiring a major rewriting of much of the code. Methods
for optimization are discussed in [4] .

Vectorization is a capability of current
supercomputers which yields the greatest efficiency
benefit. It essentially is parallel processing since it
implies that a single instruction performs many operations
instead of just one; however, in the context of this
report, parallel processing and vectorization will be
discussed separately. More information on vectorization
can be found in [4] .

Fortunately for CFD users vectorization is a
capability automatically implemented by the FORTRAN
compilers of current supercomputers. These compilers have
matured over the last few years to the point where they do
a pretty good job, and they should continue to improve with
time. Most CFD users currently depend on this automatic
capability and actually never know which loops (FORTRAN DO
loops) actually do or do not vectorize. Two capabilities
of the Cray FORTRAN compiler will be discussed and their
effect on a three-dimensional incompressible Navier-Stokes
code will be described.

Before continuing with the vectorization discussion a
few comments on parallel processing are appropriate.
Parallel processing, also called multitasking (at least by
Cray Research Inc.), is the capability to divide the
solution into segments such that they are being done
concurrently on more than one CPU. Multitasking is further
divided into two parts, macrotasking and micrctasking.
Macrotasking refers to executing multiple segments of a
program simultaneously through library calls. This
requires restructuring of the code by the user and is
generally not a trivial task. Microtasking refers to being
able to simultaneously execute segments of a program at the
DO loop level through compiler directives. This is
generally easier to do than macrotasking, creates less
overhead, and produces a code which from the computer
system management point of view is very nice because it
runs even if only one CPU is available. If and when
another CPU becomes available the microtasked code has the
ability to make use of the free CPU (or CPUs).
Implementing microtasking is important for the CFD user
although typically it is not done. This is prj.marily
because it is a relatively new feature and little effort
has been made to train CFD users to make use of it.

XXXIV - 7

Fortunately for users, compilers in the future will be able
to do at least some microtasking automatically. Cray
should eventually release a feature called autotasking,
which will automatically produce multitasked code for
certain program structures.

An important point for users to be aware of is that
multitasking reduces wall clock time, whereas vectorization
and optimization reduce CPU clock time. The user should
always reduce CPU time first by all methods available then
reduce wall clock time through multitasking.

XXXIV - 8

VECTORIZATION TOOLS INS3D

Two of the UNICOS utilities available from Cray
Research Inc. for their Cray X-MP computer system are
loopmark and flowtrace. These utilities are available
under Cray's CFT77 compiler. A warning is in order for
users of Cray computer systems. Cray offers for their X-MP
systems both COS and UNICOS operating systems and various
compilers (or versions of compilers). Consult the manuals
for the system being used to see which utilities are
available and how to implement them. Also, over the last
decade compilers have continued to get "smarter", so
FORTRAN code may run differently and vectorization may be
applied differently now than in the past. Be aware of this
when comparing results.

The loopmark and flowtrace utilities will be applied
and results discussed for INS3D. The geometrical
configuration considered is three-dimensional flow past a
circular cylinder between two parallel plates. See [5]
for a discussion of this case.

The loopmark utility can be used to determine which
inner DO loops were automatically vectorized by the
compiler. The listing will bracket the DO loops and will
indicate which vectorized and which did not (see Figs. 2
and 3). Loopmark also furnishes a reason for the loop not
vectorizing. Knowledge of what causes and what inhibits
vectorization [4] is then necessary so that the code can be
modified to try and implement vectorization in loops where
the compiler could not. This involves a restructuring of
the code. Care must be taken to be sure the code runs the
same way and yields identical results before and after the

. restructuring. This typically means only a few changes
should be implemented between check runs of the code.

0

Loopmark creates a listing file which may be much
longer than the original code. Figures 2 and 3 are only
small portions of the original and modified subroutine
VISRHS2 and are only intended to show the structure of the
listing. The INS3D code is approximately 5570 lines long
and subroutine VISRHS2 is 650 lines long, so Figures 2 and
3 only show the format of the output. The left column in
each figure shows sequential line numbers with two dots
inserted for missing code. Figure 2 shows a portion of
VISRHS2 where three nested DO loops begin. The DO 50 loop
is a candidate for vectorization. Figure 3 shows VISRHS2
restructured so the original inner DO loop (DO 50 in Fig.

XXXIV - 9

2) now is broken into four shorter DO loops (DO 50, DO 51,
DO 52 and DO 53), and each of these loops does vectorize.
The 50 CONTINUE in Figure 2 and the 53 CONTINUE in Figure 3
represent the same location in the code. Also included in
Figures 2 and 3 is the vectorization information which is a
part of the output of loopmark.

Flowtrace is a utility which will monitor calls to and
from routines in the code and print various statistics
about total execution time (see Figs. 4 and 5). In Figures
4 and 5 the columns from left to right are the routines
called, the execution time in seconds for each, the
percentage that each routine used of the total execution
time, the number of times the routine was called, the
average time (number of times called divided by execution
time for routine) and finally the calling program unit for
each routine. Flowtrace also prints out a calling tree
(Fig. 6) for the program. The indentations of the routines
in the tree indicate the levels of depth in the tree.

Flowtrace does add overhead to the program run but it
is a very useful utility. It can also be enabled only for
parts of a program thus creating less total overhead. When
using flowtrace pay attention to the percent column. Man
hours (or days) should probably not be spent rewriting and
restructuring sections of the code where little time is
spent. Also realize that as a certain section of the code
is speeded up, its execution time and percentage of total
time will decrease, but the percentage of another section
of the code will increase since the percentages must always
sum to 100.

Figure 4 indicates that subroutine VISRHS2 consumes
most of the CPU time and this represents the largest
percentage of total time relative to any other subroutine.
By looking first at the flowtrace output and then at the
compiled code with loopmark enabled (Fig. 2) it is noted
that only a small portion of the DO loops in VISRHS2
vectorize automatically. By restructuring of the code all
inner DO loops in VISRHS2 can be vectorized and now VISRHS2
consumes 24.3 percent (Fig. 5) of the total time rather
than the 36.2 percent seen in Figure 4 and the execution
time for the subroutine is reduced from 690 seconds to 389
seconds. Thus, by simply restructuring one subroutine a
speedup of 1.2 times can be attained. The subroutine
VISRHS2 which is now vectorized still requires the most
time and thus is a good candidate for microtasking of the
triply nested DO loops in it.

XXXIV - 10

ORIGINAL PAGE IS
OF POOR QUALITV

4068 3.
4068 4.
4070 5.

4107
4108
4108
4110

4114
4115
4116
4117
4118
4118
4120
4121

42.
43.
44.
45.

40.
so.
51.
52.
53.
54.
55.
56.

C *

SUBROUTINE VISRHS2
C *

4228 163. : : S C A(2,3.J) = VNUTJ* (XSIX**2 + XSIY**2 + XSIZ**2)
4228 164. : : S A(3.3.J) = VNUTJI (XSIX*ETAX + XSIY*ETAY + XSIZ*ETAZ)
4230 165. : : S A(4,3.J) = VNUTJ* (XSIX*ZETAX + XSIY*ZETAY + XSIZ*ZETAZ)
4231 166. : : S---> 50 CONTINUE
4232 167. : S C = = = = = a = P = - = = i a a n = ~ = = = = = a * = = = = = = = = ~ a a ~ x ~ x ~ ~ a a = = = ~ = = = = = a ~ - a ~ = = = = = ~ = = ~ = = = =

V E C T O R I Z A T I O N I N F O R M A T I O N

*** *** Loop starting at line 51 was not vectorized because
a value is defined in a conditionally executed block but used in another block of the loop

Figure 2 Loopmark Results for Original Version of
Subroutine VISRHS2

XXXIV - 11

4068
4069
4010

4111
4112
4113

4117
4118
4119
4120
4121

4130
4131
4132
4133
4134
4135

4147
4148
4149
4150
4151
4152
4153

4176
4117
4178
4179
4180

4218
4211
4220
4221

3.
4.
5.

41. :

48. :

52. :
53. :
54. :
5 5 . :
5 6 . :

6 5 . :
66. :
67. :
6 8 . :

70. :
69. :

82. :
83. :
0 4 . :
85. :
8 % . :

0 8 . :
8 1 . :

111. :
112. :
113. :
114. :
115. :

153. :
154. :
155. :
156. :

s

s
s
S

s
s
s

S
s
s

s

S
S

c**
SUBROUTINE VISRHS2

C**~************* e
Do 100 K=KENDZ,KENDY
DO 100 L=2,LM

C

IKL= (K-1) *KK+(L-l) *LL
C

V---<
V

v---> 5 0

C

C

V---<
V

V
V---> 51

C

C

V---<
V

V
V---> 52

0

V---<
V

V
V---> 53

C

IF (KPERI .EQ. 1) then
DO 50 J=l.JMAX
IJL=J+(L-l) *LL

continue

else

W 51 J=l.JYAX
IJL=J+(L-l)*LL

ZKnn(j) = (Z(1RR)- 8.*(Z(IR)-Z(IP))- Z(1PP))/12.
continue

endi f

Do 52 j=l,JMAX
IJL=J+(L-1)*LL

endi f
continue

do 53 j = 1,jmax
IJL=J+(L-l) *LL

A(4,3,J) = VNUTJ* (XSIX*ZETAX + XSIY*ZETAY + XSIZ*ZETAZ)
continue

V E C T O R I Z A T I O N I N F O R M A T I O N
...

* * * * * * Loop starting at line 55 was vectorized
. *** *** Loop starting at line 6 9 was vectorized

*** *** Loop starting at line 07 was vectorized
* * * * * * Loop starting at line 114 was vectorized

Figure 3 Loopmark Results for Modified Version of
Subroutine VISRHS2

XXXIV - 12 ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITV

1 F L O W T R A C E -- Alphabetized summary
0 Routine

26 BC
14 COMET
20 ETAINV
9 FLUXVE
3 GRID
5 IC
2 INITIA
4 JACOB
1 MAIN
8 METRIC
60254314la

28 OUTPUT
7 R H S
12 SMOOTH
6 STEP
19 TK
15 TKINV
18 TRI

002555457a

002555571a
17 TRI2

22 TRIP
21 TRIP2
27 VISCT
10 VISRHS
11 VISRHS2
16 XIINV
23 ZETAINV

* * * TOTAL

Time executing Called Average T
2.953 (0.15%) 600 0 . 0 0 5 002534712a Called by MAIN

102.060 (5.36%)4453200 > 802540467a Called by STEP
47.676 (2.50%) 19800 0.002 002561161a Called by STEP
46.220 (2.43%)2226600 > Q02541716a Called by R H S
0.016 (0.00%) 1 0.016 602541775a Called by INITIA
0.006 (0.00%) 1 0.006.002542222a Called by INITIA

> (0.00%) 1 > 002542313a Called by MAIN
0.257 (0.01%) 1 0.257 Q02542452a Called by INITIA
0.025 (0.00%) 1 0.025 002534546a Called by

111.373 (5.84%)4453200 > Called by RHS STEP
2226600 2226600

0.032 (0.00%) 12 0.003 Q02545674a called by MAIN
129.922 (6.82%) 600 0.217 802552200a Called by STEP

213.562 (11.21%) 600 0.356 002553733a called by MAIN
122.022 (6.40%)2226600 > 002554776a Called by STEP
159.074 (8.35%)2226600 > 002555201a Called by STEP
14.113 (0.74%) 72000 > Called by XIINV ZETAINV

10.001 (0.52%) 36000 > Called by XIINV ZETAINV

14.930 (0.78%) 39600 > e02555720a Called by ETAINV
10.346 (0.54%) 19800 > 002556150a Called by ETAINV
0.007 (0.00%) 600 > 602556434a Called by MAIN

60.761 (3.19%) 600 0.101 002552772a Called by RHS

32400 39600

16200 19800

86.818 (4.56%) 2226600 > 002556442a Called by R H S
690.153 (36.21%) 600 1.150 802556621a called by R H S
41.489 (2.18%) 16200 0.003 002560350a Called by STEP
41.989 (2.20%) 19800 0.002 802562424a called by STEP

1905.804 18039617 Total c a l l s

Figure 4 Flowtrace Summary for Original Version of INS3D

XXXIV - 13

1 F L O W T R A C E -- Alphabetized summary
0 Routine

26 BC
14 COMET
20 ETAINV
9 FLUXVE
3 GRID
5 IC
2 INITIA
4 JACOB
1 MAIN
8 METRIC
802551112a

28 OUTPUT
7 RHS
12 SMOOTH
6 STEP

19 TK
15 TKINV
18 TRI

e02563430a

Q02563542a
17 TR12

22 TRIP
21 TRIP2
27 VISCT
10 VISRHS
11 VISRHS2
16 XIINV
23 ZETAINV

* * * TOTAL

Time executing Called
2. 950

101.112
41.241
46.727
0.015
0.005

>
0.257
0.025

111.036

0.033
129.301
60.290

212.457
121.543
158.434
14.025

9.905

14.784
10.240
0.001
88.592

388,858
41.285
41.762

1588.885

(0.18%) 600
(6.32%) 4453200
(2.95%) 19800
(2.92%)2226600
(0.00%) 1
(0.00%) 1
(0.00%) 1
(0.02%) 1
(0.00%) 1
(8.94%) 4453200

Average T
0.005 Q02542663a called by

> 002546440a Called by
0.002 Q02570143a Called by

> caO2547687a Called by
0.015 002547146a Called by
0.005 @02550173a Called by

> 902550264a called by
0.257 002550423a Called by
0.025 902542517a Called by

> called by RHS

MAIN
STEP
STEP
RHS

INITIA
INITIA

MAIN
INITIA

STEP

(0.00%) 12
(8.09%) 600

(3.77%) 800
(13.29%) 600
(7.60%) 2226600
(9.91%)2226600
(0 . 8 8 %) 72000

(0.62%) 38000

(0.92%) 39600
(0.64%) 19800
(0.00%) 600

(5.42%)2226600
(24.32%) 600

(2.58%) 16200
(2.61%) 19800
18039617 Total calls

2228600 2228600
0.003 002553845a called by NAIN
0.216 002560151a Called by STEP
0.100 a02560743a called by RHS
0.354 Q02561704a Called by MAIN

> 902563152a Called by STEP
> Called by XIINV ZETAINV

> Called by XIINV ZETAINV

> Q02563671a Called by ETAINV
> 802564121a Called by ETAINV
> 802584405a called by MAIN
> 802564413a Called by RHS

0.648 802564572a called by RHS
0.003 @02567332a Called by STEP
0.002 802571406a Called by STEP

> 602562747a Called by STEP

32400 39600

16200 19800

Figure 5 Flowtrace Summary for Modified Version of INS3D

ORIGINAL PAGE IS
OF POOR QUALlTV

XXXIV - 14

ORIGINAL PAGE IS
OF POOR QUALITY

1 F L o w T R A c E -- Calling tree
1 MAIN 025425170

3 CRI D 02547748a

5 IC 02550173a
6 STEP 02581704a
7 RHS 0258015la

2 INITIA 02550264.

4 JACOB 02550423a

0 METRIC 02551112a
e FLUKVE 02547867a
10 VISRHS 02584413a
11 VISRHS2 02584572a
12 SMOOTH 02560743a
13 METRIC 02551112a
14 COMET 02546440a

16 XIINV 02587332a
17 TRI 2 02583542a
18 TRI 02583430a
19 TK 02582747a

15 TKINV 02583152a

20 ETAINV 02570143a
21 TRIP2 02564121a
22 TRIP 02583871a

24 TRI 2 02583542a
25 TRI 02583430a
26 BC 02542863a
27 VISCT 02564405a

23 ZETAINV 02571406a

20 OUTPUT 02553845a
STOP in MAIN

Figure 6 Flowtrace Calling Tree for INS3D

XXXIV - 15

CONCLUSIONS AND RECOMMENDATIONS

During the past decade CFD codes have been accepted
with justifiable skepticism by users interested in design
and analysis. These users are not interested in getting
just a llnumberll out of these codes, they are interested in
getting a believable llnumberll in an affordable amount of
time. Today, with many codes promising good results, users
must have criteria they can rely on to evaluate codes.
They also must be able to efficiently apply these codes to
various problems on often scarce or expensive computing
resources.

CFD users need to be able to evaluate codes in a
reasonable amount of time and with a high degree of
assurance that the chosen codes are efficient and yield
accurate results. Evaluation criteria should be
established for this purpose. Along with establishing
criteria to evaluate codes is the need to educate code
users of the utilities and methods to develop efficient and
accurate codes.

The application of the loopmark and flowtrace
utilities to a CFD code show that efficiency can be
enhanced by using basic tools available to but not
necessarily known by users. Along with the development of
evaluation criteria should be the education of users on how
to develop efficient well-written FORTRAN code.

Besides loopmark and flowtrace are other utilities
which can enhance performance of codes. Also, multitasking
(parallel processing) needs to be used by CFD code users to
make the most efficient use of supercomputer resources.
Work is under way to apply both microtasking and
macrotasking to INS3D; hopefully this work will be of
interest to the user community.

XXXIV - 16

REFERENCES

1. Thompson, J.F., Warsi, Z.U.A., and Mastin, C.W.
Numerical Grid Generation: Foundations and
Amlications, North Holland, 1985.

2. Wang, T.S., Soni, B . K . , 88Goodness-of -Grid:
Quantitative Measurest8, AIAA/ASME/SIAM/APS First
National Fluid Dynamics Congress, July 25-28, 1988,
Cincinnati, Ohio.

3. Peterson, V . L . , "The Impact of Supercomputers on the
Aerospace Sciences, "AIAA Twenty-fourth Aerospace
Sciences Meeting, Reno, Nevada, January, 1986.

4. Ziebarth, J.P., IIIntroduction to Supercomputing8t,
course notes, University of Alabama in Huntsville,
1988.

5. Rogers, S.E., Kwak, D., and Chang, J.L.C., I8INS3D - An
Incompressible Navier-Stokes Code in Generalized Three-
Dimensional Coordinatest8, NASA Technical Memorandum
100012, November, 1987.

XXXIV - 17

